Introduction to the
Cray X86 Compiler

Nathan Wichmann
wichmann@cray.com

uuuuuuuuuuuuuuuuuuuuuu

B SOk
Cray Opteron Compiler: Brief History of Time

™ Cray has a long tradition of high performance compilers
Vectorization
Parallelization

Code transformation
More...

™ Began internal investigation leveraging an open source compiler
called LLVM

™ Initial results and progress better than expected
™ Decided to move forward with Cray X86 compiler

™ First release December 2008

Cray Inc. Confidential Slide 2

e Yot/

Why a Cray X86 Compiler?

™ Standard conforming languages and programming models
Fortran 2003
UPC & CoArray Fortran
» Fully optimized and integrated into the compiler
» No preprocessor involved
» Target the network appropriately:
GASNet with Portals
DMAPP with Gemini & Aries

™ Ability and motivation to provide high-quality support for
custom Cray network hardware

™ Cray technology focused on scientific applications

Takes advantage of Cray’s extensive knowledge of automatic
vectorization

Takes advantage of Cray’s extensive knowledge of automatic
shared memory parallélization

Supplements, rather than replaces, the available compiler choices

Technology Sources

C and C++ Front End
supplied by Edison Design
Group, with Cray-developed
code for extensions and
interface support

Fortran Source C and C++ Source

Interprocedural Analysis Cray Inc. Compiler

Technology

Optimization and
Parallelization

Compiler

X86 Code Cray X2 Code
\ Generator Generator ;!
.~ | X86 Code Generation from

-- 4 Open Source LLVM, with
additional Cray-developed
optimizations and interface
support

o = e e = e = e e e e e e e e e e e e e e e e ——

Object File

Cray Inc. Proprietary Slide 4

B ek
Cray Opteron Compiler: How to use it

™ Make sure it is available
module avail PrgEnv-cray

™ To access the Cray compiler
module load PrgEnv-cray

™ To target the Barcelona chip
module load xtpe-quadcore

™ Once you have loaded the module “cc” and “ftn” are the Cray

compilers
Recommend just using default options
Use —rm (fortran) and —hlist=m (C) to find out what happened

Example: ftn —rm —c file.f90

Cray Inc. Confidential

Slide 5

B SRk
Cray Opteron Compiler: Current Capabilities

™ Excellent Vectorization
Vectorize more loops than other compilers

™ OpenMP
2.0 standard
Nesting

™ PGAS: Functional UPC and CAF available today.

™ Excellent Cache optimizations
Automatic Blocking
Automatic Management of what stays in cache

™ Prefetching, Interchange, Fusion, and much more...

Cray Inc. Confidential Slide 6

Cray Opteron Compiler: Directives

™ Cray compiler supports a full and growing set of directives and
pragmas

Idir$ concurrent

1dir$ ivdep

Idir$ interchange

1dir$ unroll

Idir$ loop_info [max_trips] [cache na] ... Many more
Idir$ blockable

man directives
man loop _info

Cray Inc. Confidential

Slide 7

EE——— SaRkv/
Cray Opteron Compiler: Current Strengths

MLoop Based Optimizations

Vectorization
Interchange
Pattern Matching

Cache blocking/ non-temporal / prefetching
®Fortran Standard
WPGAS (UPC and Co-Array Fortran)
M Optimization Feedback: Loopmark
MFocus

Cray Inc. Confidential

Slide 8

Loopmark: Compiler Feedback

™ Compiler can generate an filename.lst file.
Contains annotated listing of your source code with letter indicating important
optimizations
%%% Loopmark Legend %%%
Primary Loop Type Modifiers

a - vector atomic memory operation
A - Pattern matched b - blocked

C - Collapsed f - fused

D - Deleted 1 - interchanged

E - Cloned m - streamed but not partitioned

I - Inlined p - conditional, partial and/or computed

M - Multithreaded r - unrolled
P - Parallel/Tasked s - shortloop
V - Vectorized t - array syntax temp used
W - Unwound w - unwound

Cray Inc. Confidential
Slide 9

Example: Cray loopmark messages for Resid

e ftn —rm ... or cc —hlist=m ...

29. b------- < do i3=2,n3-1
30. b b-----< do i2=2,n2-1

31. bb Vr--< doi1=1,n1

32. bb Vr ut(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33. bb Vr > + u(i1,i2,i3-1) + u(i1,i2,i3+1)

34. bb Vr u2(i1) = u(it1,i2-1,i3-1) + u(it1,i2+1,i3-1)
35. bb Vr > + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
36. bb Vr--> enddo

37. bb Vr--< doi1=2,n1-1

38. bbVr r(i1,i2,i3) = v(i1,i2,i3)

39. bb Vr > -a(0) * u(i1,i2,i3)

40. b b Vr > -a(2) *(u2(i1) + u1(i1-1) + ut(i1+1))
41. bb Vr > -a(3) *(u2(i1-1) + u2(i1+1))
42. b b Vr--> enddo

43. b b--—---> enddo
44. p--—mm- > enddo

Example: Cray loopmark messages for Resid (cont)

ftn-6289 ftn: VECTOR File = resid.f, Line = 29

A loop starting at line 29 was not vectorized because a recurrence was found on "U1"
between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30

A loop starting at line 30 was not vectorized because a recurrence was found on "U1"
between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31

A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31

A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37

A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37

A loop starting at line 37 was vectorized.

Cray Opteron Compiler: Current Weaknesses

®Tuned Performance

Vectorization
Non-temporal caching
Blocking

Many end-cases
MScheduling
mSpilling
®No C++

®Very young X86 compiler

Cray Inc. Confidential

Slide 12

Cray Opteron Compiler: Future Capabilities

™ C++ Support
™ Optimized PGAS

Will require Gemini network to really go fast
™ Improved Vectorization

™ Automatic Parallelization

Modernized version of Cray X1 streaming capability
Interacts with OMP directives

™ Improve Cache optimizations

Cray Inc. Confidential

Slide 13

B SR/
Cray Opteron Compiler: Summary

WA new compiler which supplements available compilers

M Optimized CA-Fortran and UPC for future Cray products
Functional PGAS compiler avail on XT today

mStill a very young compiler

®WWith many interesting capabilities

Cray Inc. Confidential

Slide 14

